Transfer Learning via Multiple Inter-task Mappings

نویسندگان

  • Anestis Fachantidis
  • Ioannis Partalas
  • Matthew E. Taylor
  • Ioannis P. Vlahavas
چکیده

In this paper we investigate using multiple mappings for transfer learning in reinforcement learning tasks. We propose two different transfer learning algorithms that are able to manipulate multiple inter-task mappings for both model-learning and model-free reinforcement learning algorithms. Both algorithms incorporate mechanisms to select the appropriate mappings, helping to avoid the phenomenon of negative transfer. The proposed algorithms are evaluated in the Mountain Car and Keepaway domains. Experimental results show that the use of multiple inter-task mappings can significantly boost the performance of transfer learning methodologies, relative to using a single mapping or learning without transfer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatically Mapped Transfer between Reinforcement Learning Tasks via Three-Way Restricted Boltzmann Machines

Reinforcement learning applications are hampered by the tabula rasa approach taken by existing techniques. Transfer for reinforcement learning tackles this problem by enabling the reuse of previously learned results, but requires an inter-task mapping to encode how the previously learned task and the new task are related. This paper presents an autonomous framework for learning inter-task mappi...

متن کامل

Transfer learning with probabilistic mapping selection

When transferring knowledge between reinforcement learning agents with different state representations or actions, past knowledge must be efficiently mapped to novel tasks so that it aids learning. The majority of the existing approaches use pre-defined mappings provided by a domain expert. To overcome this limitation and enable autonomous transfer learning, this paper introduces a method for w...

متن کامل

Transfer Learning via Inter-Task Mappings for Temporal Difference Learning

Temporal difference (TD) learning (Sutton and Barto, 1998) has become a popular reinforcement learning technique in recent years. TD methods, relying on function approximators to generalize learning to novel situations, have had some experimental successes and have been shown to exhibit some desirable properties in theory, but the most basic algorithms have often been found slow in practice. Th...

متن کامل

Unsupervised Cross-Domain Transfer in Policy Gradient Reinforcement Learning via Manifold Alignment

The success of applying policy gradient reinforcement learning (RL) to difficult control tasks hinges crucially on the ability to determine a sensible initialization for the policy. Transfer learning methods tackle this problem by reusing knowledge gleaned from solving other related tasks. In the case of multiple task domains, these algorithms require an inter-task mapping to facilitate knowled...

متن کامل

Transferring Evolved Reservoir Features in Reinforcement Learning Tasks

The major goal of transfer learning is to transfer knowledge acquired on a source task in order to facilitate learning on another, different, but usually related, target task. In this paper, we are using neuroevolution to evolve echo state networks on the source task and transfer the best performing reservoirs to be used as initial population on the target task. The idea is that any non-linear,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011